Το πρόβλημα αρχικών-συνοριακών τιμών για εξελικτικές μη γραμμικές μερικές διαφορικές εξισώσεις

Thumbnail Image
Date
2010-02-08T11:06:03Z
Authors
Χιτζάζης, Ιάσονας
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Στην παρούσα διδακτορική διατριβή μελετά με το πρόβλημα αρχικών-συνοριακών τιμών (ΠΑΣΤ) για τη μη γραμμική εξελικτική μερική διαφορική εξίσωση των Korteweg-De Vries (KDV) σε ένα φραγμένο διάστημα της χωρικής μεταβλητής. Η μέθοδος που εφαρμόζουμε είναι γνωστή σαν μέθοδος του ενοποιημένου μετασχηματισμού. Η εφαρμογή της μεθόδου στο υπό θεώρηση ΠΑΣΤ συνίσταται στη λεγόμενη ταυτόχρονη φασματική ανάλυση του αντίστοιχου της εξίσωσης KDV ζεύγους Lax. Ένας βασικός ερευνητικός στόχος που επιτεύχθηκε στη συνεισφορά αυτή συνίσταται στην έκφραση, για μια αρκετά γενική κλάση αρχικών και συνοριακών συνθηκών, της λύσης του ΠΑΣΤ σαν μια ολοκληρωτική αναπαράσταση μέσω της λύσης ενός κατάλληλου προβλήματος Riemann-Hilbert (RH) στο μιγαδικό επίπεδο της φασματικής παραμέτρου. Μάλιστα, παρέχονται δύο εναλλακτικές ολοκληρωτικές αναπαραστάσεις για καθένα από δύο εναλλακτικά προβλήματα RH. Ένα δεύτερος ερευνητικός στόχος ο οποίος επιτυγχάνεται είναι η ανάπτυξη μιας διαδικασίας αναγωγής του ιδιόμορφου προβλήματος RH σε ένα ολόμορφο. Ένας τρίτος, τέλος, ερευνητικός στόχος ο οποίος επιτυγχάνεται είναι ο χαρακτηρισμός της λεγόμενης γενικευμένης απεικόνισης Dirichlet-to-Neumann, η έκφραση, δηλαδή, των αγνώστων συνοριακών συναρτήσεων μέσω των επιβεβλημένων αρχικών και συνοριακών συνθηκών. Η διατριβή διαρθρώνεται σε επτά κεφάλαια, εκ των οποίων το πρώτο είναι εισαγωγικού χαρακτήρα, ενώ τα υπόλοιπα έξι αποτελούν το πρωτότυπο μέρος της διατριβής. Αναλυτικά, το περιεχόμενο καθενός κεφαλαίου έχει ως ακολούθως. Στο πρώτο κεφάλαιο παρουσιάζεται, μεταξύ άλλων, το πρόβλημα RH, τη μέθοδο της αντίστροφης σκέδασης για την KDV, τη μέθοδο της ένδυσης για την KDV και τη μέθοδο της ταυτόχρονης φασματικής ανάλυσης του ζεύγους Lax. Στο κεφάλαιο 2 ξεκινάμε την εφαρμογή της μεθόδου στο υπό θεώρηση ΠΑΣΤ υποθέτοντας ότι η KDV επιδέχεται λύση στην αντίστοιχη χωροχρονική περιοχή. Η αντίστοιχη της περιοχής αυτής ταυτόχρονη φασματική ανάλυση του ζεύγους Lax οδηγεί στη διατύπωση ενός ιδιόμορφου ομογενούς προβλήματος RH. Αυτό ορίζεται μέσω μιας εξάδας φασματικών συναρτήσεων. Οι τελευταίες εκφράζονται μέσω των αρχικών τιμών της λύσης και των συνοριακών τιμών και εγκαρσίων συνοριακών της μέχρι και δεύτερης τάξης. Στο κεφάλαιο 3 ορίζουμε τις 6 φασματικές συναρτήσεις που αντιστοιχούν στις αρχικές και συνοριακές συνθήκες και δείχνουμε ότι η αντιστροφή των απεικονίσεων αυτών περιγράφεται μέσω καταλλήλων προβλημάτων RH. Δείχνουμε επίσης ότι ικανοποιείται μια εξίσωση που ονομάζεται ολική σχέση και χαρακτηρίζει τα αποδεκτά σύνολα αρχικών και συνοριακών συναρτήσεων. Στο κεφάλαιο 4 δείχνουμε ότι η ασυμπτωματική συμπεριφορά της λύσης του προβλήματος RH οδηγεί πράγματι σε μια λύση του ΠΑΣΤ. Στο κεφάλαιο 5 μελετάμε τη μονοσήμαντη επιλυσιμότητα του προβλήματος RH. Στο κεφάλαιο 6 παρουσιάζουμε έναν εναλλακτικό τρόπο διατύπωσης προβλήματος RH, αντικαθιστώντας του πόλους με καμπύλες ασυνέχειας. Στο κεφάλαιο 7 χρησιμοποιούμε την ολική σχέση για την κατασκευή της γενικευμένης απεικόνισης Dirichlet-to-Neumann, για το χαρακτηρισμό δηλαδή των αγνώστων συνοριακών συναρτήσεων (που εμφανίζονται στο πρόβλημα RH) μέσω των επιβεβλημένων αρχικών και συνοριακών συνθηκών.
Description
Keywords
Πρόβλημα αρχικών-συνοριακών τιμών, Εξελικτική, Μη γραμμική, Μερικές διαφορικές εξισώσεις, Ολοκληρώσιμη, Ζεύγος Lax, Πρόβλημα Riemann-HIilbert
Citation