Βέλτιστη ανάδραση καταστάσεων με χρήση της μερικής διαφορικής εξίσωσης Hamilton-Jacobi-Bellman

dc.contributor.advisorΚωνσταντίνος Κράβαρηςgr
dc.contributor.authorΠαππάς, Αντώνιοςgr
dc.contributor.committeeΚωνσταντίνος Κράβαρηςgr
dc.contributor.committeeΙωάννης Τσαμόπουλοςgr
dc.contributor.committeeΛυμπεράτος, Γεράσιμοςgr
dc.contributor.otherPappas, Antoniosen
dc.date.accessioned2007-05-14T05:51:42Z
dc.date.available2007-05-14T05:51:42Z
dc.date.copyright2006-03-28
dc.date.issued2007-05-14T05:51:42Z
dc.degreeΜεταπτυχιακή Εργασίαgr
dc.description.abstractΗ μερική διαφορική εξίσωση Hamilton-Jacobi-Bellman παράγει τη λύση στο πρόβλημα του υπολογισμού της βέλτιστης ανάδρασης καταστάσεων σε μη γραμμικά δυναμικά συστήματα. Η προσπάθεια ανάπτυξης εύχρηστων και αξιόπιστων μεθόδων αριθμητικής ή προσεγγιστικής επίλυσης της εξίσωσης Hamilton-Jacobi-Bellman έχει τεράστια σημασία στη ρύθμιση διεργασιών γιατί μπορεί να οδηγήσει άμεσα σε εργαλεία σχεδιασμού μη γραμμικών ρυθμιστών. Ειδικότερα, στη ρύθμιση διεργασιών, η απόδοση ενός ρυθμιστικού συστήματος αξιολογείται βάσει ενός τετραγωνικού δείκτη απόδοσης σε άπειρο χρονικό ορίζοντα, και η βέλτιστη ανάδραση καταστάσεων μπορεί να υπολογισθεί μέσω της λύσης της εξίσωσης Hamilton-Jacobi-Bellman, μη εξαρτώμενης από το χρόνο. Στο πρόβλημα της επίλυσης της παραπάνω εξίσωσης παρουσιάζονται σοβαρές δυσκολίες, κυρίως λόγω υπολογιστικής πολυπλοκότητας. Για το λόγο αυτό, οι μέχρι στιγμής πρακτικές εφαρμογές υπήρξαν περιορισμένες. Στην παρούσα εργασία αναπτύσσεται υπολογιστική μέθοδος, βασισμένη στον αλγόριθμο επαναλήψεων Newton-Kantorovich, η οποία επιτυγχάνει πολυωνυμική προσέγγιση της λύσης της μερικής διαφορικής εξίσωσης Hamilton-Jacobi-Bellman υπό μορφή αναπτύγματος σε δυναμοσειρά Taylor. Με τον τρόπο αυτό επιταχύνονται σημαντικά οι υπολογισμοί για τον προσδιορισμό της βέλτιστης ανάδρασης καταστάσεων. Η μέθοδος εφαρμόζεται αρχικά σε ένα παράδειγμα ισοθερμοκρασιακού αντιδραστήρα συνεχούς λειτουργίας με ανάδευση, ο οποίος παρουσιάζει δυναμική συμπεριφορά μη-ελάχιστης φάσης, με μία είσοδο, μία έξοδο και δύο καταστάσεις. Στη συνέχεια, εφαρμόζεται σε παραδείγματα μη ισοθερμοκρασιακού αντιδραστήρα αντίστοιχης δυναμικής συμπεριφοράς, τριών καταστάσεων, πρωτίστως με μία είσοδο και μία έξοδο και κατόπιν με δύο εισόδους και δύο εξόδους. Με ανάπτυξη και εφαρμογή κώδικα MAPLE για κάθε μία περίπτωση χωριστά, υπολογίζονται προσεγγιστικά οι βέλτιστοι νόμοι ανάδρασης και σχεδιάζονται οι βέλτιστες αποκρίσεις των εισόδων και των εξόδων κάθε ενός από τα παραπάνω συστήματα, ενώ ταυτόχρονα γίνεται και καταγραφή των αντίστοιχων χρόνων εκτέλεσης κάθε κώδικα. Τέλος, στην περίπτωση του ισοθερμοκρασιακού αντιδραστήρα, γίνεται σύγκριση της προτεινόμενης μεθόδου με προϋπάρχουσες, κατά κύριο λόγο σε ζητήματα χρόνων εκτέλεσης, αλλά και σε ζητήματα απόδοσης στη ρύθμιση.gr
dc.description.translatedabstractThe partial differential equation Hamilton-Jacobi-Bellman produces the solution in the problem of calculation of optimal state feedback in non-linear dynamic systems. The effort of designing functional and reliable, numerical or approximate, methods for solving Hamilton-Jacobi-Bellman equation has enormous importance in process control because it can lead directly to tools of planning non-linear regulators. More specifically, in process control, the attribution of a regulating system is evaluated using a quadratic performance index in infinite time horizon, and the optimal state feedback can be calculated by the solution of the non time depended Hamilton-Jacobi-Bellman equation. The problem of solving the equation above encounters serious difficulties, mainly because of the calculation complexity. For this reason, the practical applications existed until now were very few. In the present work a calculating method is developed, based in the iterative algorithm Newton-Kantorovich, which achieves polynomial approach of the solution of partial differential equation Hamilton-Jacobi-Bellman under the form of Taylor series expansion. Thus the calculations for the determination of optimal state feedback are considerably accelerated. The method is initially applied in an example of continuous stirred tank reactor, with non-minimum phase dynamic behavior, with one input, one output and two state variables. Afterwards, it is applied in examples of not isothermal reactor of the same dynamic behavior, three state variables, firstly with one input and one output variables and then with two input and two output variables. Using the symbolic program MAPLE, a code was developed for each case separately, which calculates approximately the optimal feedback laws and designs the optimal responses of the inputs and outputs of each of the systems above, while the corresponding times of implementation of each code are simultaneously recording. Finally, in the case of isothermal reactor, a comparison is made between the proposed and preexisting methods, mainly in the base of the time of implementations and the regulation performance.en
dc.identifier.urihttps://hdl.handle.net/10889/84
dc.relation.isformatofΗ ΒΥΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της.gr
dc.subjectHamilton-Jacobi-Bellmanen
dc.subjectΑνάδραση καταστάσεωνgr
dc.subjectΜη γραμμική ρύθμισηgr
dc.subjectΒέλτιστη ρύθμισηgr
dc.subjectΒέλτιστοι τετραγωνικοί ρυθμιστέςgr
dc.subject.alternativeHamilton-Jacobi-Bellmanen
dc.subject.alternativeState feedbacken
dc.subject.alternativeNonlinear controlen
dc.subject.alternativeOptimal Controlen
dc.subject.alternativeQuadratic optimal regulatorsen
dc.subject.ddc515.353
dc.titleΒέλτιστη ανάδραση καταστάσεων με χρήση της μερικής διαφορικής εξίσωσης Hamilton-Jacobi-Bellmangr
dc.title.alternativeOptimal state feedback using partial differential equation Hamilton-Jacobi-Bellmanen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
434.pdf
Size:
2.71 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.8 KB
Format:
Item-specific license agreed upon to submission
Description: