Please use this identifier to cite or link to this item:
Title: Ανάκτηση εικόνας βάσει υφής με χρήση Eye tracker
Other Titles: A texture based image retrieval technique using Eye tracker
Authors: Καραδήμας, Ηλίας
Issue Date: 2011-01-11T07:40:45Z
Keywords: Ανάκτηση εικόνας
Φίλτρα Gabor
Καταγραφή οφθαλμικών κινήσεων
Keywords (translated): Image retrieval
Gabor filters
Eye movements recording
Eye tracker
Abstract: Η ραγδαία αύξηση των εικόνων, σε συνδυασμό με την αδυναμία των συστημάτων ανάκτησης εικόνας βάσει περιεχομένου να εξάγουν σημασιολογικά χαρακτηριστικά, οδήγησαν στην εισαγωγή του ανθρώπινου παράγοντα στην πειραματική διαδικασία. Ένας πολύ συνηθισμένος και επιτυχημένος τρόπος χρησιμοποίησης του ανθρώπινου συστήματος όρασης είναι μέσω της καταγραφής των οφθαλμικών κινήσεων. Στο σύστημα ανάκτησης το οποίο προτείνεται στην παρούσα εργασία γίνεται καταγραφή των σημείων εστίασης που προέκυψαν κατά την παρατήρηση των εικόνων βάσεως. Από τα σημεία αυτά, γίνεται εξαγωγή χαρακτηριστικών υφής με δύο μεθόδους, τα φίλτρα Gabor και το διακριτό μετασχηματισμό συνημιτόνου (DCT), παράγοντας πολυδιάστατα διανύσματα. Τα διανύσματα αυτά συγκρίνονται ανά δύο μέσω του μη παραμετρικού WW test, δημιουργώντας έναν πίνακα αποστάσεων. Με την εισαγωγή μιας ζητούμενης εικόνας στο σύστημα, τα χαρακτηριστικά υφής της συγκρίνονται με αυτά της βάσης προσθέτοντας μια επιπλέον διάσταση στον πίνακα απόστασης. Η απεικόνιση της σχέσης μεταξύ όλων των εικόνων (συμπεριλαμβανομένης και της αιτούμενης) γίνεται σε ένα χάρτη τριών διαστάσεων μέσω πολυδιάστατης κλιμάκωσης (MDS αλγόριθμος). Τα αποτελέσματα τα οποία προέρχονται από τα φίλτρα Gabor παρουσιάζουν μεγαλύτερη αξιοπιστία, κάνοντας εφικτή την επέκταση του συστήματος με χρήση μίας μεγαλύτερης βάσης εικόνων.
Abstract (translated): The rapid increase of images, combined with the weakness of the Content Based Image Retrieval (CBIR) systems to extract semantic features, led to the introduction of the human factor into the experimental procedure. A very common and successful way of using the human vision system is through the record of eye movements. In the retrieval system which is proposed in the present thesis, the fixation points that arose from viewing the database images are recorded. From these points, the texture features are extracted using two methods, Gabor filters and Discrete Cosine Transform (DCT), producing multidimensional vectors. These vectors are compared through the non parametric WW test, creating a distance matrix. By producing a query image in the system, its’ texture features are compared to those of the database, adding an extra dimension to the distance matrix. The visual representation of the relation among all the images (query image included), is depicted in a three dimensional map using multidimensional scaling (MDS algorithm). The results obtained from Gabor filters are characterized by higher robustness, making the expansion of the system possible, by using a bigger image database.
Appears in Collections:Τμήμα Φυσικής (ΜΔΕ)

Files in This Item:
File Description SizeFormat 
Nimertis_Karadimas(phys).pdf7.9 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.