Please use this identifier to cite or link to this item:
Title: Τοπολογική ταξινόμηση δυναμικών συστημάτων
Authors: Αναστασίου, Σταύρος
Issue Date: 2012-08-31
Keywords: Δυναμικά συστήματα
Τοπολογική ταξινόμηση
Ποιοτική μελέτη
Θεωρία διακλαδώσεων
Θεωρία κόμβων
Keywords (translated): Dynamical systems
Topological classification
Qualitative study
Bifurcation theory
Knot theory
Abstract: Η τοπολογική ταξινόμηση και μελέτη διανυσματικών πεδίων αποτελεί το κύριο θέμα αυτής της διατριβής. Στο Κεφάλαιο 1 δίνονται οι απαραίτητοι ορισμοί, καθώς και τα αποτελέσματα επί της ταξινόμησης διανυσματικών πεδίων σε μονοδιάστατες και δισδιάτατες πολλαπλότητες. Στο Κεφάλαιο 2 τεχνικές της Θεωρίας Κόμβων χρησιμοποιούνται προκειμένου να μελετηθεί η τοπολογική δομή ορισμένων παράξενων ελκυστών που εμφανίζονται στη διεθνή βιβλιογραφία. Στο Κεφάλαιο 3 αναπτύσσεται μία μέθοδος η οποία επιτρέπει την ολική τοπολογική ταξινόμηση διανυσματικών πεδίων σε ευκλείδειους χώρους οποιασδήποτε διάστασης. Η μέθοδος αυτή έπειτα εφαρμόζεται στην ταξινόμηση διανυσματικών πεδίων του R^2 και του R^3. Στο Κεφάλαιο 4 μελετάται ένα διανυσματικό πεδίο του R^3 αμετάβλητο από την D_2 ομάδα. Δίνεται η ολική του μελέτη, για διάφορες τιμές των παραμέτρων, και το μερικό του διάγραμμα διακλάδωσης. Αποδεικνύεται η ύπαρξη χάους και συνδέεται με τις συμμετρικές ιδιότητες του συστήματος, ενώ η μελέτη ολοκληρώνεται με τη συμπεριφορά του συστήματος στο άπειρο.
Abstract (translated): The topological classification and study of vector fields is the subject of this thesis. In Chapter 1 the necessary definitions are given, along with the known results on the classification of vector fields on 1-dimensional and 2-dimensional manifolds. In Chapter 2 methods of Knot Theory are used for the clarification of the topological study of some strange attractors found in the bibliography. In Chapter 3 a technique is developed, which can be used to classify globally vector fields defined on Euclidean spaces of any dimension. This technique is then used to classify some vector fields of R^2 and R^3. In the final Chapter 4 a vector field of R^3 is studied which is invariant under the D_2 symmetry group. We present its global phase portrait, for various parameter values, and its partial bifurcation diagram. The existence of chaos is proven and its connection to the symmetry properties of the attractor is discussed. We end its study presenting its behavior at infinity.
Appears in Collections:Τμήμα Μαθηματικών (ΔΔ)

Files in This Item:
File Description SizeFormat 
Nimertis_Staurou(math).pdf2.86 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.