Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Spectral conjugate gradient methods with sufficient descent property for neural network training
    (2010-04-08T08:12:20Z) Λιβιέρης, Ιωάννης; Πιντέλας, Παναγιώτης; Livieris, Ioannis; Pintelas, Panagiotis
    Τμήμα Μαθηματικών (Τεχνικές Αναφορές)
    Σε αυτήν την εργασία, αξιολογούμε την απόδοση μιας νέας κλάσης μεθόδων συζυγών κλίσεων για την εκπαίδευση νευρικών δικτύων. Οι προτεινόμενες μέθοδοι διατηρούν τα πλεονεκτήματα των κλασσικών μεθόδων συζυγών κλίσεων και εκμεταλλεύονται την απουσία των συχνά αναπαποτελεσματικών επανεκκινήσεων. Τα ενθαρρυντικά αριθμητικά αποτελέσματα επαληθεύουν ότι οι προτεινόμενες μέθοδοι παρέχουν γρηγορότερη, σταθερότερη και πιο αξιόπιστη σύγκλιση.
  • Thumbnail Image
    Item
    Αποτίμηση μεθόδων εκπαίδευσης τεχνητών νευρωνικών δικτύων και εφαρμογές
    (2009-08-31T10:52:11Z) Λιβιέρης, Ιωάννης; Ζαγούρας, Χαράλαμπος; Πιντέλας, Παναγιώτης; Καββαδίας, Δημήρτης; Ζαγούρας, Χαράλαμπος
    Τμήμα Μαθηματικών (ΜΔΕ)
    Τα τεχνητά νευρωνικά δίκτυα είναι μια μορφή τεχνητής νοημοσύνης, τα οποία αποτελούνται από ένα σύνολο απλών, διασυνδεδεμένων και προσαρμοστικών μονάδων, οι οποίες συνιστούν ένα παράλληλο πολύπλοκο υπολογιστικό μοντέλο. Μέχρι σήμερα έχουν εφαρμοστεί επιτυχημένα σε ένα ευρύ φάσμα περιοχών για την επίλυση προβλημάτων ταξινόμησης ή πρόβλεψης, όπως η βιολογία, η ιατρική, η γεολογία, η φυσική κ.ά. Σε αυτήν την εργασία θα ασχοληθούμε με την εκπαίδευση τεχνητών νευρωνικών δικτύων ανά πρότυπο εισόδου. Αυτή η προσέγγιση θεωρείται κατεξοχήν κατάλληλη για περιπτώσεις όπου η εκπαίδευση διαθέτει σημαντικό χρόνο και απαιτεί μεγάλο αποθηκευτικό χώρο, όπως συμβαίνει συχνά όταν έχουμε μεγάλα σύνολα προτύπων ή/και δίκτυα. Μέχρι σήμερα έχουν προταθεί πολλοί αλγόριθμοι εκπαίδευσης νευρωνικών δικτύων, καλύπτοντας ο ένας τα κενά του άλλου, σχεδιασμένοι ώστε να επιλύουν τα προβλήματα που παλιότερα ήταν δύσκολο να επιλυθούν. Στόχος της εργασίας είναι η εκτενής ανάλυση και αξιολόγηση των αλγορίθμων εκπαίδευσης καθώς και η ικανότητα γενίκευσης των εκπαιδευόμενων δικτύων σε μια ποικιλία προβλημάτων από τους τομείς τις ιατρικής και της βιοπληροφορικής. Επίσης επηρεασμένοι από τη δυνατότητα για την επίτευξη καλύτερης απόδοσης θα μελετήσουμε την συμβολή των νευρωνικών δικτύων στη μηχανική μάθηση. Συγκεκριμένα θα αποτιμήσουμε τη συνεισφορά των νευρωνικών δικτύων στη δημιουργία αξιόπιστων συστημάτων αποφάσεων χρησιμοποιώντας τεχνικές συνδυασμού ταξινομητών. Τέλος, θα μελετήσουμε τις δυνατότητες συνδυασμού τους με διάφορες άλλες κατηγορίες ταξινομητών μηχανικής μάθησης για την ανάπτυξη ισχυρότερων υβριδικών συστημάτων εξαγωγής πληροφορίας.
  • Thumbnail Image
    Item
    Μη γραμμικές μέθοδοι συζυγών κλίσεων για βελτιστοποίηση και εκπαίδευση νευρωνικών δικτύων
    (2012-12-04) Λιβιέρης, Ιωάννης; Πιντέλας, Παναγιώτης; Βραχάτης, Μιχαήλ; Λυκοθανάσης, Σπυρίδων; Livieris, Ioannis
    Τμήμα Μαθηματικών (ΔΔ)
    Η συνεισφορά της παρούσας διατριβής επικεντρώνεται στην ανάπτυξη και στη Μαθηματική θεμελίωση νέων μεθόδων συζυγών κλίσεων για βελτιστοποίηση χωρίς περιορισμούς και στη μελέτη νέων μεθόδων εκπαίδευσης νευρωνικών δικτύων και εφαρμογών τους. Αναπτύσσουμε δύο νέες μεθόδους βελτιστοποίησης, οι οποίες ανήκουν στην κλάση των μεθόδων συζυγών κλίσεων. Οι νέες μέθοδοι βασίζονται σε νέες εξισώσεις της τέμνουσας με ισχυρά θεωρητικά πλεονεκτήματα, όπως η προσέγγιση με μεγαλύτερη ακρίβεια της επιφάνεια της αντικειμενικής συνάρτησης. Επιπλέον, μία σημαντική ιδιότητα και των δύο προτεινόμενων μεθόδων είναι ότι εγγυώνται επαρκή μείωση ανεξάρτητα από την ακρίβεια της γραμμικής αναζήτησης, αποφεύγοντας τις συχνά αναποτελεσματικές επανεκκινήσεις. Επίσης, αποδείξαμε την ολική σύγκλιση των προτεινόμενων μεθόδων για μη κυρτές συναρτήσεις. Με βάση τα αριθμητικά μας αποτελέσματα καταλήγουμε στο συμπέρασμα ότι οι νέες μέθοδοι έχουν πολύ καλή υπολογιστική αποτελεσματικότητα, όπως και καλή ταχύτητα επίλυσης των προβλημάτων, υπερτερώντας σημαντικά των κλασικών μεθόδων συζυγών κλίσεων. Το δεύτερο μέρος της διατριβής είναι αφιερωμένο στην ανάπτυξη και στη μελέτη νέων μεθόδων εκπαίδευσης νευρωνικών δικτύων. Προτείνουμε νέες μεθόδους, οι οποίες διατηρούν τα πλεονεκτήματα των κλασικών μεθόδων συζυγών κλίσεων και εξασφαλίζουν τη δημιουργία κατευθύνσεων μείωσης αποφεύγοντας τις συχνά αναποτελεσματικές επανεκκινήσεις. Επιπλέον, αποδείξαμε ότι οι προτεινόμενες μέθοδοι συγκλίνουν ολικά για μη κυρτές συναρτήσεις. Τα αριθμητικά αποτελέσματα επαληθεύουν ότι οι προτεινόμενες μέθοδοι παρέχουν γρήγορη, σταθερότερη και πιο αξιόπιστη σύγκλιση, υπερτερώντας των κλασικών μεθόδων εκπαίδευσης. Η παρουσίαση του ερευνητικού μέρους της διατριβής ολοκληρώνεται με μία νέα μέθοδο εκπαίδευσης νευρωνικών δικτύων, η οποία βασίζεται σε μία καμπυλόγραμμη αναζήτηση. Η μέθοδος χρησιμοποιεί τη BFGS ενημέρωση ελάχιστης μνήμης για τον υπολογισμό των κατευθύνσεων μείωσης, η οποία αντλεί πληροφορία από την ιδιοσύνθεση του προσεγγιστικού Eσσιανού πίνακα, αποφεύγοντας οποιαδήποτε αποθήκευση ή παραγοντοποίηση πίνακα, έτσι ώστε η μέθοδος να μπορεί να εφαρμοστεί για την εκπαίδευση νευρωνικών δικτύων μεγάλης κλίμακας. Ο αλγόριθμος εφαρμόζεται σε προβλήματα από το πεδίο της τεχνητής νοημοσύνης και της βιοπληροφορικής καταγράφοντας πολύ καλά αποτελέσματα. Επίσης, με σκοπό την αύξηση της ικανότητας γενίκευσης των εκπαιδευόμενων δικτύων διερευνήσαμε πειραματικά και αξιολογήσαμε την εφαρμογή τεχνικών μείωσης της διάστασης δεδομένων στην απόδοση της γενίκευσης των τεχνητών νευρωνικών δικτύων σε μεγάλης κλίμακας δεδομένα βιοϊατρικής.
  • Thumbnail Image
    Item
    Classification of Large Biomedical Data using ANNs based on BFGS method
    (2010-04-08T08:13:39Z) Λιβιέρης, Ιωάννης; Σωτηρόπουλος, Δημήτριος; Πιντέλας, Παναγιώτης; Livieris, Ioannis; Sotiropoulos, Dimitris; Pintelas, Panagiotis
    Τμήμα Μαθηματικών (Τεχνικές Αναφορές)
    Τα τεχνητά νευρωνικά δίκτυα έχουν ευρέως χρησιμοποιηθεί για την εξόρυξη γνώσης από βιοιατρικά δεδομενά και συνιστούν ένα σημαντικό ρόλο στην ανάλυση και στην εξερεύνηση βιο-δεδομένων. Σε αυτή την εργασία, προτείνουμε μια νέα μέθοδο για την εκπαίδευση νευρωνικών δικτύων, ο οποίος βασίζεται στην ανάλυση του ιδιοσυστήματος των BFGS χωρίς μνήμη πινάκων. Η προτεινόμενη μέθοδος διατηρεί τις ισχυρές ιδιότητες σύγκλισης, οι οποίες παρέχονται από την κατεύθυνση quasi-Newton ενώ παράλληλη εκμεταλλεύεται τη μη-κυρτότητα της συνάρτησης σφάλματος με τον υπολογισμό της κατεύθυνσης της αρνητικής κυρτότητας αποφεύγοντας την αποθήκευση και την παραγοντοποίηση πίνακα. Επιπλέον για τη βελτίωση της ικανότητας γενίκευσης των εκπαιδευόμενων δικτύων, ερευνούμε την επίδραση της υιοθέτησης τεχνικών μείωσης της διάστασης του συνόλου δεδομένων ως ένα βήμα προεπεξεργασίας.