
ASME - GREEK SECTION, First Nat. Conf. on Recent Advances in Mech. Eng., September 17-20, 2001, Patras, Greece

 1

Proceedings of the ASME – Greek Section,
 First National Conference on

Recent Advances in Mechanical Engineering
September 17-20, 2001, Patras, Greece

ANG1/P093

MATHEMATICA-BASED FORMULA VERIFICATION IN APPLIED MECHANICS

Nikolaos I. Ioakimidis
 Division of Applied Mathematics and Mechanics,

School of Engineering, University of Patras,
 P.O. Box 1120, GR-261.10 Patras, Greece

Tel.: +30 61 432-257, Fax: +30 61 433-962, E-mail: ioakimidis@otenet.gr

ABSTRACT
Mathematica is a modern and powerful computer algebra

system offering all types of computational facilities (symbolic,
numerical and graphical) to its user in an integrated environ-
ment. Therefore, it has been repeatedly used in mechanical
engineering applications. In this paper, we will show that
Mathematica can also be useful for formula verification (either
logical or algebraic) by employing either its own internal
commands or extensions of these commands such as Maeder’s
Prolog interpreter in Mathematica and, recently, Buchberger’s
Theorema, based also on Mathematica. External reasoning
systems (such as OTTER) can also be called from Mathe-
matica. The engineering applications of this paper are ob-
tained from applied mechanics and illustrate these not so well
known possibilities of Mathematica related to formula verifi-
cation.

KEYWORDS

Applied mechanics. Formula verification. Logical compu-
tations. Symbolic computations. Mathematica.

INTRODUCTION

Computer algebra systems have played (and still play) a
very important role in applied mechanics and mechanical en-
gineering long ago. For example, such systems have been suc-
cessfully used for the computation of stiffness matrices in fi-
nite element analysis since about thirty years. Today, it seems
that the most modern and powerful computer algebra system,
offering also efficient tools for numerical computations and
graphics, is Wolfram's Mathematica [1], having been origi-
nally released by Wolfram Research, Inc. in 1988. Naturally,
as is extremely well known, Mathematica offers a large vari-

ety of very carefully prepared powerful commands and a
strong programming language and, therefore, it has been al-
ready employed for the solution of many mechanical engineer-
ing problems appearing in everyday practice and research.

In this paper, we will try to show the usefulness of the
Mathematica integrated computational environment in for-
mula verification, i.e. in the derivation of conclusions about
the validity of a formula concerning an equation/inequality, a
logical formula or more general formulae. Perhaps, the proto-
type in such questions (about the truth or the falsity of a for-
mula) is to ask whether 1 + 1 == 2 (in numerical computa-
tions) or a == a (in symbolic computations). Naturally, the
Mathematica reply to both of these commands (essentially
questions) is True. Undoubtedly, these are trivial examples of
formula verification, but much more complicated formulae,
arising in more difficult problems, can be tested and verified
as being true or false. It can also be mentioned that beyond
equational formulae (such as the above ones) and analogous
inequational formulae, one can also consider logical formulae
such as A ∧∧∧∧ B ⇒⇒⇒⇒ A or A ∨∨∨∨ ¬¬¬¬A ⇒⇒⇒⇒ True (the symbols ∧, ∧, ∧, ∧, ∨∨∨∨ and
¬¬¬¬ denoting conjunction, disjunction and negation, respec-
tively), which are also true, and combinations of algebraic and
logical formulae.

Much more important work has been already made in
Mathematica with respect to theorem proving through the ex-
tremely powerful Theorema system by Buchberger and the
Theorema Group [2] with respect to theorem proving with
Mathematica. Moreover, Maeder [3] prepared a Prolog inter-
preter in Mathematica so that the logical capabilities of Prolog
can be (partially) transferred to the Mathematica mainly alge-
braic environment and be directly available there.

ASME - GREEK SECTION, First Nat. Conf. on Recent Advances in Mech. Eng., September 17-20, 2001, Patras, Greece

 2

The aim of the present paper is to show the usefulness of
Mathematica as well as of Mathematica-based packages and
programs (which can be called from Mathematica) for the di-
rect, black-box verification of formulae arising in applied me-
chanics and mechanical engineering of either a logical or an
algebraic nature. The term verification means that no analyti-
cal proofs are provided (contrary to what is the case with
Theorema and exactly to what is the case with Prolog and
Maeder's Prolog emulation in Mathematica), but the truth or
the falsity of the formula under consideration is completely
studied and the correct conclusion is drawn. In general, this is
sufficient for the mechanical engineer.

Among the problems of applied mechanics and mechani-
cal engineering that could be considered (through appropriate
formulae verification) we can mention:

1. A conclusion that excessive loading causes cost and de-
lay drawn on the basis of four axioms such as Fracture ⇒⇒⇒⇒
Replacement and the data ExcessiveLoading.

2. Conclusions about the appropriate numerical method in
the boundary (singular) integral equation method for the solu-
tion of crack problems in plane elasticity and fracture mechan-
ics and the determination of stress intensity factors (SIFs) at
the crack tips, naturally this method depending on the type of
the crack (interior, edge or interface) and the extrapolation ap-
proach to be used (polynomial or natural) if any.

3. Conclusions about the conditions (deflection, slope,
bending moment and shear force) at a simple beam end B de-
rived on the basis of available conditions at the other beam
end A and the related valid assumptions in beam problems.

4. Conclusions concerning the motion of a particle on a
circular contour (velocity and acceleration).

5. A conclusion about the lack-of-contact conditions be-
tween the two faces of a penny-shaped crack under a normal
loading in three-dimensional elasticity and contact mechanics.

6. A conclusion about an inequality constraint for the
temperature distribution (the temperature is required to no-
where exceed an upper bound) along a bar under a constant
rate of heat generation in heat transfer.

For the sake of space, only the first four of the above six
applied mechanics conclusions will be studied in this paper.

In the first three of the above conclusions, we will use in
Mathematica (or through Mathematica) logical-type tools such
as the simple Mathematica LogicalExpand command and
Maeder’s Prolog emulation in Mathematica. Next, in the
fourth of the above conclusions, we will use an advanced al-
gebraic tool: Buchberger’s Groebner bases also offered by
Mathematica. Of course, further extensions to even more
complicated, non-trivial applied mechanics and, in general,
mechanical engineering problems are also completely possi-
ble.

It seems that the present results (formal verification of
formulae either of a logical or of an algebraic nature through
Mathematica) may prove to be of interest in applied mechan-
ics and, more generally, in mechanical engineering and, there-
fore, they may offer a new area of applicability of Mathe-
matica to engineering practice, which seems not having been

sufficiently investigated so far contrary to its symbolic, nu-
merical and graphical capabilities, which have already proved
so useful in engineering computations. Of course, although
Maeder' Prolog [3] has been actually used in theorem proving
since 1994 by Maeder himself, a further significant extension
of this possibility will become available as soon as the already
mentioned Buchberger’s Theorema system [2] (a Mathematica
package capable to derive formal proofs of valid formulae in
natural language, compared to black-box verifications only in
Prolog and in the present approach too) be released (in final,
commercial form) and this is expected to take place during
2002 or 2003.

A FRACTURE MECHANICS PROBLEM
We begin with a rather simple problem in mechanical en-

gineering involving logic. This is the problem of a specimen
with a crack, where fracture can appear. This problem was
originally considered by Ioakimidis [4] by using the OTTER
automated deduction system for the proof of a related conclu-
sion. Here we will use Mathematica [1] instead for the verifi-
cation of this and similar conclusions. We assume that the fol-
lowing reasonable premises hold true:

1. An excessive loading causes the appearance of a very
high stress intensity factor (SIF) at the crack tip.

2. Such a very high stress intensity factor causes the frac-
ture of the specimen.

3. The fracture of the specimen has as a consequence its
replacement.

4. The replacement of the specimen has as a consequence
a related cost as well as the delay in the actual possible use of
the specimen in production.

These assumptions can easily be declared to Mathematica
through the following simple commands:

p1 = ExcessiveLoading ⇒⇒⇒⇒ VeryHighStressIntensityFactor;
p2 = VeryHighStressIntensityFactor ⇒⇒⇒⇒ Fracture;
p3 = Fracture ⇒⇒⇒⇒ Replacement;
p4 = Replacement ⇒⇒⇒⇒ CostAndDelay;

Let us also assume that we really have an excessive load-
ing applied to the specimen (at a particular moment), i.e.

p0 = ExcessiveLoading;

Then we wish to verify that we will also have cost and delay
under the above assumptions, i.e. that the following conclu-
sion will hold true:

c0 = CostAndDelay;

To this end we should give the verification command

r0 = (p0 ∧∧∧∧ p1 ∧∧∧∧ p2 ∧∧∧∧ p3 ∧∧∧∧ p4) ⇒⇒⇒⇒ c0

ASME - GREEK SECTION, First Nat. Conf. on Recent Advances in Mech. Eng., September 17-20, 2001, Patras, Greece

 3

Unfortunately, the Mathematica output is not satisfactory sim-
ply since the standard command LogicalExpand should also
be used. Therefore, after the logical expansion of r0

LogicalExpand[r0]

we get True and this completes the verification of the formula.
We have thus verified that in our specimen excessive loading
causes cost and delay. In an analogous manner, we have also
verified that our assumptions p1 to p4 imply the conclusion

c1 = ExcessiveLoading ⇒⇒⇒⇒ CostAndDelay;

and, naturally, this is also obvious. The related command is

r1 = LogicalExpand[(p1 ∧∧∧∧ p2 ∧∧∧∧ p3 ∧∧∧∧ p4) ⇒⇒⇒⇒ c1]

Finally, there is also the refutational way of verification.
For example, the conclusion r1 can also be verified through
the related refutational command

r1 = LogicalExpand[p1 ∧∧∧∧ p2 ∧∧∧∧ p3 ∧∧∧∧ p4 ∧∧∧∧ ¬¬¬¬c1]

Naturally, the related Mathematica output is now False instead
of True before. It is also obvious that any attempt to logically
verify incorrect conclusions (on the basis of the above as-
sumptions: p1 to p4) failed. Therefore, it is clear that Mathe-
matica can verify not only algebraic formulae, but also logical
conclusions on the basis of its own command LogicalExpand.

Beyond the LogicalExpand command, we can also work
with Prolog emulation in Mathematica. The related package
has been prepared by Maeder [3]. This seems to be a signifi-
cant enhancement of Mathematica with respect to logical con-
clusions. For this task at first we have to load the three related
packages of Maeder: Unify.m, Lisp.m and LogicProgram-
ming.m (in this particular order). Next, we can insert our al-
ready-mentioned assumptions (p1, p2, p3 and p4) as well as
our data (p0) about the present fracture problem. This can be
easily done through the special Assert command:

Assert[VeryHighStressIntensityFactor, ExcessiveLoading]
Assert[Fracture, VeryHighStressIntensityFactor]
Assert[Replacement, Fracture]
Assert[CostAndDelay, Replacement]
Assert[ExcessiveLoading]

respectively. Now we are ready to ask our queries to Maeder’s
Prolog interpreter in Mathematica, e.g.

Query[ExcessiveLoading]
Query[CostAndDelay]

the reply being (in both cases) Yes. More explicitly, the first
query is trivial because of our identical assertion, whereas for
the second query Mathematica and its Prolog interpreter took

also into account all of the above assertions. A somewhat
more complex command to the Prolog interpreter could be

Map[Query, {ExcessiveLoading, VeryHighStressIntensity-
Factor, Fracture, Replacement, CostAndDelay}]

with a list of five Yes in the reply because of all of our above
assumptions and data. Additional questions can also be put to
the Prolog interpreter (through the Query command) on the
basis of the assumptions and data available (being introduced
through the Assert command and removed through the Re-
tract command). In this (alternative) way of working, we can
again verify the validity (truth) of a formula (reply Yes) or
show the lack of validity (falsity) of such a formula (reply
No). (Incidentally, the command Map permits us to check the
validity of a set of formulae through just one command.)

Now we will proceed to one more application of formula
verification from the areas of numerical analysis and fracture
mechanics by using (again) Mathematica.

THE APPROPRIATE NUMERICAL METHOD IN A
CRACK PROBLEM

This problem concerns the selection of the appropriate
method for the numerical solution of the boundary (singular)
integral equation of a plane elasticity crack problem, to which
it has been reduced, and it has been already studied by the au-
thor [4] by using the OTTER automated deduction system.

The following abbreviations are used: (i) From the physi-
cal point of view, we assume we may have either an internal
crack (IC) or an edge crack (EC) or even an interface crack
(FC). (ii) From the numerical analysis point of view, we can
use either Gauss-type rules (more explicitly, the Gauss-
Chebyshev rule, GC, or the modified Gauss-Legendre rule,
MGL, or the Gauss-Jacobi rule, GJ) or Lobatto-type rules
(more explicitly the Lobatto-Chebyshev rule, LC, or the modi-
fied Lobatto-Legendre rule, MLL, or the Lobatto-Jacobi rule,
LJ). The Chebyshev-type rules are convenient only for ICs,
the modified Legendre-type rules only for ECs and the Jacobi-
type rules only for FCs. Moreover, the Gauss-type rules are
used when we wish to compute the stress-intensity factors
(SIFs) at the crack tips with either a polynomial extrapolation
(PE) or a natural extrapolation (NE). In the case we do not
wish to use extrapolation techniques (no extrapolation, NO)
for the computation of the SIFs, then a Lobatto-type rule
should be used. This situation can easily be declared to
Mathematica:

{p1 = IC ⇒⇒⇒⇒ (GC ∨∨∨∨ LC) ∧ ∧ ∧ ∧ ¬¬¬¬(MGL ∨∨∨∨ MLL) ∧ ∧ ∧ ∧ ¬¬¬¬(GJ ∨∨∨∨ LJ),
 p2 = EC ⇒⇒⇒⇒ ¬¬¬¬(GC ∨∨∨∨ LC) ∧ ∧ ∧ ∧ (MGL ∨∨∨∨ MLL) ∧ ∧ ∧ ∧ ¬¬¬¬(GJ ∨∨∨∨ LJ),
 p3 = FC ⇒⇒⇒⇒ ¬¬¬¬(GC ∨∨∨∨ LC) ∧ ∧ ∧ ∧ ¬¬¬¬(MGL ∨∨∨∨ MLL) ∧ ∧ ∧ ∧ (GJ ∨∨∨∨ LJ)};

(as far as the type of crack is concerned) and

{p4 = PE ∨∨∨∨ NE
 ⇒⇒⇒⇒ (GC ∨∨∨∨ MGL ∨∨∨∨ GJ) ∧ ∧ ∧ ∧ ¬¬¬¬(LC ∨∨∨∨ MLL ∨∨∨∨ LJ),

ASME - GREEK SECTION, First Nat. Conf. on Recent Advances in Mech. Eng., September 17-20, 2001, Patras, Greece

 4

 p5 = NO ⇒⇒⇒⇒ ¬¬¬¬(GC ∨∨∨∨ MGL ∨∨∨∨ GJ) ∧ ∧ ∧ ∧ (LC ∨∨∨∨ MLL ∨∨∨∨ LJ)};

(as far as the possibility of extrapolation is concerned).

We are now ready to proceed to verifications concerning
the appropriate quadrature rule in the case of an assumed type
of crack and an extrapolation/no-extrapolation method for the
computation of the SIFs. For example, we can consider the
validity of the conclusion

c1a = FC ∧ (∧ (∧ (∧ (PE ∨∨∨∨ NE) ⇒⇒⇒⇒ GJ

i.e. the Gauss-Jacobi (GJ) quadrature rule is the appropriate
one in the case of an interface crack (FC) together with the use
of either a polynomial extrapolation (PE) or a natural extrapo-
lation (NE) method for the computation of the SIFs at the
crack tips. Naturally, this conclusion, assumed correct, cannot
be verified by itself, but it can, possibly, be verified by using
our above assumptions p1 to p5 already known to Mathe-
matica. This can be easily done through the simple command

r1a = p1 ∧ ∧ ∧ ∧ p2 ∧ ∧ ∧ ∧ p3 ∧∧∧∧ p4 ∧ ∧ ∧ ∧ p5 ⇒⇒⇒⇒ c1a//LogicalExpand

and we get the expected result True under our assumptions.
Therefore, our conclusion has been verified to be correct. Al-
ternatively, but equivalently, we could have written

r1b = FC ∧ (∧ (∧ (∧ (PE ∨∨∨∨ NE) ∧ ∧ ∧ ∧ p1 ∧ ∧ ∧ ∧ p2 ∧ ∧ ∧ ∧ p3 ∧∧∧∧ p4 ∧ ∧ ∧ ∧ p5 ⇒⇒⇒⇒ GJ
 //LogicalExpand

getting again the expected verification result True.

In a similar way, we can verify the validity of the conclu-
sion that in the case of an interface crack (FC), but now no
extrapolation (NO) for the computation of the SIFs, the Lo-
batto-Jacobi quadrature rule is the appropriate one. To this
end, we can just write the Mathematica command

r1c = FC ∧ ∧ ∧ ∧ NO ∧ ∧ ∧ ∧ p1 ∧ ∧ ∧ ∧ p2 ∧ ∧ ∧ ∧ p3 ∧∧∧∧ p4 ∧ ∧ ∧ ∧ p5 ⇒⇒⇒⇒ LJ
 //LogicalExpand

with the result True again. Therefore, this conclusion is also a
correct one (always on the basis of our original assumptions).

Assuming that we have loaded Maeder’s Prolog inter-
preter packages (Unify.m, Lisp.m and LogicProgram-
ming.m) exactly as we did in the previous application, we can
also use the Maeder Prolog interpreter in Mathematica again.
In this way, of working, it is very convenient to introduce the
Prolog predicates CrackAppropriate and ExtrapolationAp-
propriate (with obvious meanings) as follows:

{Assert[CrackAppropiate[GC], IC],
 Assert[CrackAppropiate[LC], IC],
 Assert[CrackAppropiate[MGL], EC],
 Assert[CrackAppropiate[MLL], EC],
 Assert[CrackAppropiate[GJ], FC],
 Assert[CrackAppropiate[LJ], FC]};

{Assert[ExtrapolationAppropriate[GC], PE ∨∨∨∨ NE],
 Assert[ExtrapolationAppropriate[MGL], PE ∨∨∨∨ NE],
 Assert[ExtrapolationAppropriate[GJ], PE ∨∨∨∨ NE]};

{Assert[ExtrapolationAppropriate[LC], NO]
 Assert[ExtrapolationAppropriate[MLL], NO],
 Assert[ExtrapolationAppropriate[LJ], NO]};

Naturally, all of the above assertions represent our aforemen-
tioned theoretical hypotheses about the appropriate quadrature
rule in each particular case of a crack and an extrapolation/no-
extrapolation method used. We can now introduce one more
assertion through the logical rule

Assert[Appropriate[rule_], CrackAppropiate[rule_]
 ∧∧∧∧ ExtrapolationAppropriate[rule_]]

where the new predicate Appropriate has been introduced.
This assertion means that when a quadrature rule (denoted by
rule_ in this Mathematica assertion) is simultaneously appro-
priate for the type of the crack and for the type of extrapola-
tion/no-extrapolation method, then it is definitively appropri-
ate for the solution of the boundary (singular) integral equa-
tion and the computation of the SIFs at the crack tips.

Beyond the above assertions, which concern our funda-
mental theoretical results about the appropriateness (and, in
Prolog, implicitly, the lack of appropriateness) of numerical
integration rules, we should also declare our particular data for
a concrete crack problem to be solved. For example, we have

{Assert[FC], Assert[NE]};

for an interface crack and with the natural extrapolation for-
mula to be used for the computation of the SIFs. Then we can
ask the Mathematica-based Maeder’s Prolog interpreter that
we use several queries such as

Map{Query, Map[CrackAppropriate,
 {GC, LC, MGL, MLL, GJ, LJ}]]

with Mathematica’s reply

{No, No, No, No, Yes, Yes}

revealing that only the Gauss-Jacobi (GJ) and the Lobatto-
Jacobi (LJ) quadrature rules are crack-appropriate in our case
(of an interface crack). Similarly, through an analogous com-
mand, Mathematica finds that all three GC, MGL and GJ
quadrature rules are extrapolation-appropriate (reply Yes) in
our case of natural extrapolation, the other three quadrature
rules (LC, MLL and LJ) being inappropriate (reply No).

Finally, through the more specialized single command

Query[Appropriate[GJ]]

ASME - GREEK SECTION, First Nat. Conf. on Recent Advances in Mech. Eng., September 17-20, 2001, Patras, Greece

 5

we get the reply Yes and, therefore, we have verified through
Mathematica (plus its Prolog emulation package by Maeder)
that really the Gauss-Jacobi (GJ) quadrature rule is an appro-
priate rule in our case of an interface crack and natural ex-
trapolation. (For all other rules the reply would be No). Alter-
natively, we can also use the more general command

QueryAll[Appropriate[rule_]]

with the answer revealing that only the Gauss-Jacobi (GJ)
quadrature rule is an appropriate rule.

The conclusion is that with the help of Mathematica either
directly or with the further help of its Maeder Prolog inter-
preter we can be sure about the quadrature rule to be used in
each particular case and, next, we can safely proceed with the
numerical solution and the SIFs computation. We will now
proceed to a third application concerning a beam problem.

A SIMPLE BEAM PROBLEM

We consider the problem of an ordinary beam with our in-
terest in the conditions at its two ends. We will use again
Maeder’s Prolog interpreter in Mathematica.

At first, we will introduce the predicates BeamEnd and
BeamEnds, for which the following three assertions hold true:

Assert[BeamEnd[a_], BeamEnds[a_, b_]]
Assert[BeamEnd[b_], BeamEnds[a_, b_]]
Assert[Fixed[b_], BeamEnds[a_, b_] ∧∧∧∧ Free[a_]]

The first two of the above assertions are trivial for a human,
but not for a computer program such as Mathematica. The
third assertion is less trivial: it simply states that if one end of
the beam is free, the other end is fixed (clamped). Perhaps, a
little more knowledge from applied mechanics is required for
the following also elementary assertions for the deflection, the
slope, the bending moment and the shear force at a beam end:

Assert[Deflection[a_, 0],
 BeamEnd[a_] ∧ (∧ (∧ (∧ (Fixed[a_] ∨∨∨∨ SimplySupported[a_])]
Assert[Slope[a_, 0], BeamEnd[a_] ∧ ∧ ∧ ∧ Fixed[a_]]
Assert[BendingMoment[a_, 0],
 BeamEnd[a_] ∧ (∧ (∧ (∧ (SimplySupported[a_] ∨∨∨∨ Free[a_])]
Assert[ShearForce[a_, 0], BeamEnd[a_] ∧ ∧ ∧ ∧ Free[a_]]

The meanings of the above four new predicates seem to be
obvious from their names as well as the meanings of all four
above assertions for a beam end.

Let us proceed now to a concrete example. We assume
that we have a beam with two ends, a1 and b1, and we know
that the first of them is free. Then we have the following two
additional assertions for our present special beam problem:

Map[Assert, {BeamEnds[a1, b1], Free[a1]}]

to be added to the already available list of rules in Mathe-
matica (through its Prolog interpreter). At first, we can verify

that at the free end, a1, the bending moment and the shear
force should be zero. This can be done through the command

Map[Query, {BendingMoment[a1, 0], ShearForce[a1, 0]}]

with a reply Yes in both of these queries. Analogously, we can
verify that the second end, b1, of the same beam is fixed. This
can also be verified through the command

Query[Fixed[b1]]

again with a reply Yes. We can also prove that both the deflec-
tion and the slope at b1 are zero (naturally, since b1 was seen
to be a fixed end, since a1 is a free end) by using the com-
mand

Map[Query, {Deflection[b1, 0], Slope[b1, 0]}]

Additional and, naturally, more complicated beam-end prob-
lems can also be studied by using the same logical approach.

CIRCULAR MOTION OF A PARTICLE
 Naturally, Mathematica can also be used for the verifica-

tion of algebraic formulae, yielding the result True for correct
formulae. In this section, we will consider a somewhat more
complicated verification, based on the Groebner-basis algo-
rithm and concerning the motion of a particle on a circumfer-
ence without an external force. This problem has also been
studied by Ioakimidis and Anastasselou [5] by using Maple.

Denoting the radius of the circumference by a and the po-
sition of the particle by (x(t), y(t)), we have the polynomial
(here written as a Mathematica command)

h1 = x[t]2 + y[t] 2 – a2;

(corresponding to the related equation of the circumference
with its right-hand side equal to zero). Additional polynomials
(essentially equations), concerning the first two derivatives of
(x(t), y(t)), with respect to the time t can easily be obtained as

pol1 = {h1, h1a = D[h1, t], h1b = D[h1a, t]}

Now, taking into account Kepler’s law in celestial me-
chanics, we assume that the vector from the center of the circle
to the particle sweeps over equal areas in equal times defined
through a constant h. Then we will also have the polynomials

pol2 = {h2 = x’[t] y[t] – x[t] y’[t] – h, h2a = D[h2, t]}

corresponding (again) to the related polynomial equations.

In order to use the Groebner-basis algorithm in Mathe-
matica (through the corresponding GroebnerBasis com-
mand), at first we must substitute simple variables for the
functions in the polynomials. This can be directly done as

sb = {x[t] -> x, x’[t] -> Dx, x’’[t] -> D2x,

ASME - GREEK SECTION, First Nat. Conf. on Recent Advances in Mech. Eng., September 17-20, 2001, Patras, Greece

 6

 y[t] -> y, y’[t] -> Dy, y’’[t] -> D2y};

Now we have got the following five polynomials:

pol = {pol1, pol2}/.sb//Factor//Flatten
{–a2 + x2 + y2, 2(Dx x + Dy y), 2(Dx2 + Dy2 + D2x x + D2y y),
– h – Dy x + Dx y, D2x y – D2y x}

(corresponding to the related equations).

Our conclusions will concern the facts that both the veloc-
ity v(t) and the acceleration γ(t) of the particle should be con-
stants (only as far as their moduli are concerned) in the present
simple circular motion. More explicitly, here we will restrict
our attention to the verification of the related elementary for-
mulae (our conclusions con1 and con2)

{con1 = a2(Dx2 + Dy2) – h2, con2 = a6(D2x2 + D2y2) – h4};

concerning the velocity and the acceleration respectively. Ob-
viously, these formulae constitute the polynomial interpreta-
tions (in Cartesian coordinates and in the Mathematica syntax)
of the facts that v(t) = h/a and γ(t) = h2/ a3.

For the verification of the first of the above two conclu-
sions (concerning the velocity of the particle), it is computa-
tionally convenient to use only the first, the second and the
fourth of the polynomials pol, i.e.

pol1 = {pol[[1]], pol[[2]], pol[[4]]}

plus the auxiliary polynomial z con1 – 1 (including the new,
auxiliary variable z) so that a refutational verification can be
achieved (since con1 should coincide to zero). Naturally, for
the second conclusion, con2 (concerning the acceleration of
the particle), the whole set of polynomials pol is required plus
the auxiliary polynomial z con2 – 1. Now for the verification
of our conclusions, we have to compute the Groebner bases

gb1 = GroebnerBasis[{pol1, z con1 – 1},
 {x, y, Dx, Dy, a, h, z}]
gb2 = GroebnerBasis[{pol, z con2 – 1},
 {x, y, Dx, Dy, D2x, D2y, a, h, z}]

In both of these cases, the computed Groebner bases were
just {1}, which simply means that the related sets of polyno-
mial equations, including con1 and con2, are incompatible.
Naturally, this is due to the fact that con1 as well as con2
should be equal to zero (since they were assumed to be correct
conclusions) and, therefore, the related polynomial equations z
con1 – 1 == 0 and z con2 – 1 == 0 cannot be satisfied for any
value of z. Thus, in the present case, this result, {1}, consti-
tutes the verification of our conclusions with respect to the
moduli of the velocity and the acceleration of the particle in
the circular motion under consideration. A very large number
of additional related results can also be verified in an analo-
gous way.

CONCLUSIONS
From the above results it is concluded that the popular

computer algebra system Mathematica offers a powerful and
integrated mathematical environment not only for symbolic
and numerical computations as well as graphics (as has been
its normal use so far), but also for the verification of conclu-
sions either of a logical or of an algebraic nature. This can be
done either by using Mathematica in its original form or in an
enhanced form such as that based on Maeder’s Prolog inter-
preter in Mathematica, which has been used above. Moreover,
non-trivial algebraic algorithms such as Buchberger’s Groeb-
ner-bases algorithm, used in the previous section, and analo-
gous advanced algorithms such as the Collins-Hong cylindri-
cal-algebraic-decomposition-based quantifier elimination al-
gorithm (recently implemented in Mathematica too) are also
particularly useful. Of course, the Theorema project [2] (also
based on Mathematica) by Buchberger and his collaborators at
RISC-Linz (now in β-version and expected to definitively ap-
pear after one or two years) offers an even more advanced en-
vironment, an actual proof environment in comparison to the
verification environment having been illustrated in this paper.
Finally, external automated reasoning systems (such as OT-
TER) can also be called and used from inside Mathematica.

In any case, both verifications and proofs based on Mathe-
matica and Theorema seem to offer interesting tools to the
mechanical engineering in several problems of applied
mechanics such as the few ones already studied in the present
paper and a very large number of additional ones in many
more areas of mechanical engineering. This seems to be a
novel and rather interesting use of classical computer algebra
systems (such as Mathematica) in engineering science.

ACKNOWLEDGMENTS
The author is most thankful to Professor Bruno Buchber-

ger and the Theorema Group for their having given him the
opportunity to use Theorema in its preliminary, α-version.

REFERENCES
[1] Wolfram, S., 1999, The Mathematica Book, 4th edition

(Mathematica, version 4), Wolfram Media, Champaign, IL,
and Cambridge University Press, Cambridge, UK.

[2] Buchberger, B. et al. 1997, “A Survey on the Theo-
rema Project”, Proceeding of the International Symposium on
Symbolic and Algebraic Computation (ISSAC) ‘97, Maui, HI.

[3] Maeder, R. E., 1996, The Mathematica Programmer
II, Academic Press, San Diego, CA, Chapter 2, pp. 21-56.

[4] Ioakimidis, N. I., 1998, “Elementary Engineering Me-
chanics Applications of the OTTER Automated Reasoning
System”, Proceedings of the 5th National Congress on Me-
chanics (edited by P. S. Theocaris, D. I. Fotiadis and C. V.
Massalas), The University of Ioannina Press, Ioannina, Vol. 2,
pp. 759-766.

[5] Ioakimidis, N. I. and Anastasselou, E. G., 1994, “Ap-
plication of Groebner Bases to Problems of Movement of a
Particle”, Computers & Mathematics with Applications, 27,
pp. 51-57.

