Βέλτιστη ανάδραση καταστάσεων με χρήση της μερικής διαφορικής εξίσωσης Hamilton-Jacobi-Bellman
Βέλτιστη ανάδραση καταστάσεων με χρήση της μερικής διαφορικής εξίσωσης Hamilton-Jacobi-Bellman
Files
Date
2007-05-14T05:51:42Z
Authors
Παππάς, Αντώνιος
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Η μερική διαφορική εξίσωση Hamilton-Jacobi-Bellman παράγει τη λύση στο πρόβλημα του υπολογισμού της βέλτιστης ανάδρασης καταστάσεων σε μη γραμμικά δυναμικά συστήματα. Η προσπάθεια ανάπτυξης εύχρηστων και αξιόπιστων μεθόδων αριθμητικής ή προσεγγιστικής επίλυσης της εξίσωσης Hamilton-Jacobi-Bellman έχει τεράστια σημασία στη ρύθμιση διεργασιών γιατί μπορεί να οδηγήσει άμεσα σε εργαλεία σχεδιασμού μη γραμμικών ρυθμιστών. Ειδικότερα, στη ρύθμιση διεργασιών, η απόδοση ενός ρυθμιστικού συστήματος αξιολογείται βάσει ενός τετραγωνικού δείκτη απόδοσης σε άπειρο χρονικό ορίζοντα, και η βέλτιστη ανάδραση καταστάσεων μπορεί να υπολογισθεί μέσω της λύσης της εξίσωσης Hamilton-Jacobi-Bellman, μη εξαρτώμενης από το χρόνο. Στο πρόβλημα της επίλυσης της παραπάνω εξίσωσης παρουσιάζονται σοβαρές δυσκολίες, κυρίως λόγω υπολογιστικής πολυπλοκότητας. Για το λόγο αυτό, οι μέχρι στιγμής πρακτικές εφαρμογές υπήρξαν περιορισμένες. Στην παρούσα εργασία αναπτύσσεται υπολογιστική μέθοδος, βασισμένη στον αλγόριθμο επαναλήψεων Newton-Kantorovich, η οποία επιτυγχάνει πολυωνυμική προσέγγιση της λύσης της μερικής διαφορικής εξίσωσης Hamilton-Jacobi-Bellman υπό μορφή αναπτύγματος σε δυναμοσειρά Taylor. Με τον τρόπο αυτό επιταχύνονται σημαντικά οι υπολογισμοί για τον προσδιορισμό της βέλτιστης ανάδρασης καταστάσεων. Η μέθοδος εφαρμόζεται αρχικά σε ένα παράδειγμα ισοθερμοκρασιακού αντιδραστήρα συνεχούς λειτουργίας με ανάδευση, ο οποίος παρουσιάζει δυναμική συμπεριφορά μη-ελάχιστης φάσης, με μία είσοδο, μία έξοδο και δύο καταστάσεις. Στη συνέχεια, εφαρμόζεται σε παραδείγματα μη ισοθερμοκρασιακού αντιδραστήρα αντίστοιχης δυναμικής συμπεριφοράς, τριών καταστάσεων, πρωτίστως με μία είσοδο και μία έξοδο και κατόπιν με δύο εισόδους και δύο εξόδους. Με ανάπτυξη και εφαρμογή κώδικα MAPLE για κάθε μία περίπτωση χωριστά, υπολογίζονται προσεγγιστικά οι βέλτιστοι νόμοι ανάδρασης και σχεδιάζονται οι βέλτιστες αποκρίσεις των εισόδων και των εξόδων κάθε ενός από τα παραπάνω συστήματα, ενώ ταυτόχρονα γίνεται και καταγραφή των αντίστοιχων χρόνων εκτέλεσης κάθε κώδικα. Τέλος, στην περίπτωση του ισοθερμοκρασιακού αντιδραστήρα, γίνεται σύγκριση της προτεινόμενης μεθόδου με προϋπάρχουσες, κατά κύριο λόγο σε ζητήματα χρόνων εκτέλεσης, αλλά και σε ζητήματα απόδοσης στη ρύθμιση.
Description
Keywords
Hamilton-Jacobi-Bellman, Ανάδραση καταστάσεων, Μη γραμμική ρύθμιση, Βέλτιστη ρύθμιση, Βέλτιστοι τετραγωνικοί ρυθμιστές