Ομογενείς μετρικές Einstein σε γενικευμένες πολλαπλότητες σημαιών

Thumbnail Image
Date
2011-06-16T07:25:05Z
Authors
Χρυσικός, Ιωάννης
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Μια πολλαπλότητα Riemann (M, g) ονομάζεται Einstein αν έχει σταθερή καμπυλότητα Ricci. Είναι γνωστό ότι αν (M=G/K, g) είναι μια συμπαγής ομογενής πολλαπλότητα Riemann, τότε οι G-αναλλοίωτες μετρικές Einstein μοναδιαίου όγκου, είναι τα κρίσιμα σημεία του συναρτησοειδούς ολικής βαθμωτής καμπυλότητας περιορισμένο στο χώρο των G-αναλλοίωτων μετρικών με όγκο 1. Για μια G-αναλλοίωτη μετρική Riemann η εξίσωση Einstein ανάγεται σε ένα σύστημα αλγεβρικών εξισώσεων. Οι θετικές πραγματικές λύσεις του συστήματος αυτού είναι ακριβώς οι G-αναλλοίωτες μετρικές Einstein που δέχεται η πολλαπλότητα Μ. Μια σημαντική οικογένεια συμπαγών ομογενών χώρων αποτελείται από τις γενικευμένες πολλαπλότητες σημαιών. Κάθε τέτοιος χώρος είναι μια τροχιά της συζυγούς αναπαράστασης μιας συμπαγούς, συνεκτικής, ημι-απλής ομάδας Lie G. Πρόκειται για ομογενείς πολλαπλότητες της μορφής G/C(S), όπου C(S) είναι ο κεντροποιητής ενός δακτυλίου S στην G. Κάθε τέτοιος χώρος δέχεται ένα πεπερασμένο πλήθος από G-αναλλοίωτες μετρικές Kahler-EInstein. Στην παρούσα διατριβή ταξινομούμε όλες τις πολλαπλότητες σημαιών G/K που αντιστοιχούν σε μια απλή ομάδα Lie G, των οποίων η ισοτροπική αναπαράσταση διασπάται σε 2 ή 4 μη αναγώγιμους και μη ισοδύναμους Ad(K)-αναλλοίωτους προσθετέους. Για κάθε τέτοιο χώρο λύνουμε την αναλλοίωτη εξίσωση Εinstein, και παρουσιάζουμε την αναλυτική μορφή νέων G-αναλλοίωτων μετρικών Einstein. Στις περισσότερες περιπτώσεις παρουσιάζουμε την πλήρη ταξινόμηση των αναλλοίωτων μετρικών Einstein. Επίσης εξετάζουμε το ισομετρικό πρόβλημα. Για την κατασκευή της εξίσωσης Einstein σε κάποιες πολλαπλότητες σημαιών με 4 ισοτροπικούς προσθετέους χρησιμοποιούμε την νηματοποίηση συστροφής που δέχεται κάθε πολλαπλότητα σημαιών επί ενός ισοτροπικά μη αναγώγιμου συμμετρικού χώρου συμπαγούς τύπου. Αυτή η μέθοδος είναι καινούργια και μπορεί να εφαρμοστεί και σε άλλες πολλαπλότητες σημαιών.
Description
Keywords
Ομογενείς μετρικές Riemann, Ομογενείς μετρικές Einstein, Ομογενείς χώροι, Γενικευμένες πολλαπλότητες σημαιών, Ισοτροπική αναπαράσταση, Ταξινόμηση, Νηματοποίηση συστροφής
Citation